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Abstract

Deep neural networks have emerged as very successful tools for image restoration and reconstruction
tasks. These networks are often trained end-to-end to directly reconstruct an image from a noisy or
corrupted measurement of that image. To achieve state-of-the-art performance, training on large and
diverse sets of images is considered critical. However, it is often di�cult and/or expensive to collect
large amounts of training images. Inspired by the success of Data Augmentation (DA) for classi�cation
problems, in this paper, we propose a pipeline for data augmentation for accelerated MRI reconstruction
and study its e�ectiveness at reducing the required training data in a variety of settings. Our DA pipeline,
MRAugment, is speci�cally designed to utilize the invariances present in medical imaging measurements
as naive DA strategies that neglect the physics of the problem fail. Through extensive studies on multiple
datasets we demonstrate that in the low-data regime DA prevents over�tting and can match or even
surpass the state of the art while using signi�cantly fewer training data, whereas in the high-data regime
it has diminishing returns. Furthermore, our �ndings show that DA can improve the robustness of the
model against various shifts in the test distribution.

1 Introduction

In magnetic resonance imaging (MRI), an extremely popular medical imaging technique, it is common to
reduce the acquisition time by subsampling the measurements, because this reduces cost and increases
accessibility of MRI to patients. Due to the subsampling, there are fewer equations than unknowns, and
therefore the signal is not uniquely identi�able from the measurements. To overcome this challenge there
has been a �urry of activity over the last decade aimed at utilizing prior knowledge about the signal, in a
research area referred to ascompressed sensing[2, 8].

Compressed sensing methods reduce the required number of measurements by utilizing prior knowledge
about the images during the reconstruction process, traditionally via a convex regularization that enforces
sparsity in an appropriate transformation of the image. More recently, deep learning techniques have been
used to enforce much more nuanced forms of prior knowledge (see Ongie et al.[22] and references therein for
an overview). The most successful of these approaches aim to directly learn the inverse mapping from the
measurements to the image by training on a large set of training data consisting of signal/measurement pairs.
This approach often enables faster reconstruction of images, but more importantly, deep learning techniques
yield signi�cantly higher quality reconstructions. Thus, deep learning techniques enable reconstructing a
high-quality image from fewer measurements which further reduces image acquisition times. For instance, in
an accelerated MRI competition known as fastMRI Challenge [38], all the top contenders used deep learning
reconstruction techniques.
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Contrary to classical compressive sensing approaches, however, deep learning techniques typically rely
on large sets of training data consisting of images along with the corresponding measurement. This is
also true about the use of deep learning techniques in other areas such as computer vision and Natural
Language Processing (NLP) where superb empirical success has been observed. While large datasets have
been harvested and carefully curated in areas such as vision and NLP, this is not feasible in many scienti�c
applications including MRI. It is di�cult and expensive to collect the necessary datasets for a variety of
reasons, including patient con�dentiality requirements, cost and time of data acquisition, lack of medical
data compatibility standards, and the rarity of certain diseases.

A common strategy to reduce reliance on training data in classi�cation tasks is data augmentation. Data
augmentation techniques are used in classi�cation tasks to signi�cantly increase the performance on standard
benchmarks such as ImageNet and CIFAR-10. For a comprehensive survey of image data augmentation in
deep learning see [29]. More speci�c to medical imaging, data augmentation techniques have been successfully
applied to registration, classi�cation and segmentation of medical images. Recently, several studies [41, 15, 40]
have demonstrated that data augmentation can signi�cantly reduce the data needed for GAN training for
high quality image generation. In a classi�cation setting, data augmentation consists of adding additional
synthetic data obtained by performing invariant alterations to the data (e.g. �ips, translations, or rotations)
which do not a�ect the response (i.e., the label).

In image reconstruction tasks, however, data augmentation techniques are less common and much more
di�cult to design because the response (the measurement) is a�ected by the data augmentation. For example,
measurements of a rotated image are not the same as measurements from the original image. In the context
of accelerated MRI reconstruction, augmentation techniques such as randomly generated undersampling
masks [19] and simple random �ipping [ 17] have been applied, and authors in Schlemper et al.[28] note the
importance of rigid transforms in avoiding over�tting. However, an e�ective pipeline of augmentations for
training data reduction and thorough experimental studies thereof are lacking.

The goal of this paper is to explore the bene�ts of data augmentation techniques for accelerated MRI with
limited training data. By carefully taking into account the physics behind the MRI acquisition process we
design a data augmentation pipeline, which we call MRAugment1, that can successfully reduce the amount
of training data required. Our contributions are as follows:

� We perform an extensive empirical study of data augmentation in accelerated MRI reconstruction. To
the best of our knowledge, this work is the �rst in-depth experimental investigation focusing on the
bene�ts of data augmentation in the context of training data reduction for accelerated MRI.

� We propose a data augmentation technique tailored to the physics of the MR reconstruction problem.
It is not obvious how to perform data augmentation in the context of accelerated MRI or in inverse
problems in general, because by changing an image to enlarge the training set, we do not automatically
get a corresponding measurement, contrary to classi�cation problems, where the label is retained.

� We demonstrate the e�ectiveness of MRAugment on a variety of datasets. On small datasets we report
signi�cant improvements in reconstruction performance on the full dataset when MRAugment is applied.
Moreover, on small datasets we are able to surpass full dataset baselines by using only a small fraction
of the available training data by leveraging our proposed data augmentation technique.

� We perform an extensive study of MRAugment on a large benchmark accelerated MRI data set,
speci�cally on the fastMRI [ 38] dataset. For 8-fold acceleration and multi-coil measurements (multi-coil
measurements are the standard acquisition mode for clinical practice) we achieve performance on par
with the state of the art with only 10% of the training data. Similarly, again for 8-fold acceleration and
single-coil experiments (an acquisition mode popular for experimentation) MRAugment can achieve the
performance of reconstruction methods trained on the entire dataset while using only 33% of training
data.

1Code: https://github.com/MathFLDS/MRAugment
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� We reveal additional bene�ts of data augmentation on model robustness in a variety of settings.
We observe that MRAugment has the potential to improve generalization to unseen MRI scanners,
�eld strengths and anatomies. Furthermore, due to the regularizing e�ect of data augmentation,
MRAugment prevents over�tting to training data and therefore may help eliminate hallucinated features
on reconstructions, an unwanted side-e�ect of deep learning based reconstruction.

2 Background and Problem Formulation

MRI is a medical imaging technique that exploits strong magnetic �elds to form images of the anatomy. MRI
is a prominent imaging modality in diagnostic medicine and biomedical research because it does not expose
patients to ionizing radiation, contrary to competing technologies such as computed and positron emission
tomography.

However, performing an MR scan is time intensive, which is problematic for the following reasons. First,
patients are exposed to long acquisition times in a con�ned space with high noise levels. Second, long
acquisition times induce reconstruction artifacts caused by patient movement, which sometimes requires
patient sedation in particular in pediatric MRI [ 35]. Reducing the acquisition time can therefore increase
both the accuracy of diagnosis and patient comfort. Furthermore, decreasing the acquisition time needed
allows more patients to receive a scan using the same machine. This can signi�cantly reduce patient cost,
since each MRI machine comes with a high cost to maintain and operate.

Since the invention of MR in the 1980s there has been tremendous research focusing on reducing their
acquisition time. The two main ideas are to i) perform multiple acquisitions simultaneously [30, 24, 9] and to
ii) subsample the measurements, known as accelerated acquisition or compressed sensing [20]. Most modern
scanners combine both techniques, and therefore we consider such a setup.

2.1 Accelerated MRI acquisition

In magnetic resonance imaging, measurements of a patient's anatomy are acquired in the Fourier-domain, also
called k-space, through receiver coils. In the single-coil acquisition mode, the k-space measurementk 2 Cn of
a complex-valued ground truth imagex � 2 Cn is given by

k = F x � + z;

where F is the two-dimensional Fourier-transform, and z 2 Cn denotes additive noise arising in the
measurement process. In parallel MR imaging, multiple receiver coils are used, each of which captures a
di�erent region of the image, represented by a complex-valued sensitivity mapSi . In this multi-coil setup,
coils acquire k-space measurements modulated by their corresponding sensitivity maps:

k i = F Si x � + z i ; i = 1 ; ::; N;

where N is the number of coils. Obtaining fully-sampled k-space data is time-consuming, and therefore in
accelerated MRI we decrease the number of measurements by undersampling in the Fourier-domain. This
undersampling can be represented by a binary maskM that sets all frequency components not sampled to
zero:

~k i = Mk i ; i = 1 ; ::; N:

We can write the overall forward map concisely as

~k = A (x � );

where A (�) is the linear forward operator and ~k denotes the undersampled coil measurements stacked into
a single column vector. The goal in accelerated MRI reconstruction is to recover the imagex � from the
set of k-space measurements~k . Note that�without making assumptions on the image x � �it is in general
impossible to perfectly recover the image, because we have fewer measurements than variables to recover.

3



This recovery problem is known as compressed sensing. To make image recovery potentially possible, recovery
methods make structural assumptions aboutx � , such that it is sparse in some basis or implicitly that it looks
similar to images from the training set.

2.2 Traditional accelerated MRI reconstruction methods

Traditional compressed sensing recovery methods for accelerated MRI are based on assuming that the image
x � is sparse in some dictionary, for example the wavelet transform. Recovery is then posed typically as a
convex optimization problem:

x̂ = arg min
x






 A (x ) � ~k








2
+ R(x );

where R(�) is a regularizer enforcing sparsity in a certain domain. Typical functions used in CS based
MRI reconstruction are `1-wavelet and total-variation regularizers. These optimization problems can be
numerically solved via iterative gradient descent based methods.

2.3 Deep learning based MRI reconstruction methods

In recent years, several deep learning algorithms have been proposed and convolutional neural networks
established new state of the art in MRI reconstruction signi�cantly surpassing the classical baselines. Encoder-
decoder networks such as the U-Net [26] and its variants were successfully used in various medical image
reconstruction [13, 10] and segmentation problems [4, 42]. These models consist of two sub-networks: the
encoder repeatedly �lters and downsamples the input image with learned convolutional �lters resulting in a
concise feature vector. This low-dimensional representation is then fed to the decoder consisting of subsequent
upsampling and learned �ltering operations. Another approach that can be considered a generalization of
iterative compressed sensing reconstructions consists of unrolling the data �ow graph of popular algorithms
such as ADMM [37] or gradient descent iterations [39] and mapping them to a cascade of sub-networks.
Several variations of this unrolled method have been proposed recently for MR reconstruction, such as i-RIM
[25], Adaptive-CS-Net [23], Pyramid Convolutional RNN [ 36] and E2E VarNet [31].

Another line of work, inspired by the deep image prior [33] focuses on using the inductive bias of
convolutional networks to perform reconstruction without any training data [ 14, 6, 12, 11, 34]. Those methods
do perform signi�cantly better than classical un-trained networks, but do not perform as well as neural
networks trained on large sets of training data.

3 MRAugment: a data augmentation pipeline for MRI

In this section we propose our data augmentation technique, MRAugment, for MRI reconstruction. We
emphasize that data augmentation in this setup and for inverse problems in general is substantially di�erent
from DA for classi�cation problems. For classi�cation tasks, the label of the augmented image is trivially the
same as that of the original image, whereas for inverse problems we have to generate both an augmented
target image and the corresponding measurements. This is non-trivial as it is critical to match the noise
statistics of the augmented measurements with those in the dataset.

We are given training data in the form of fully-sampled MRI measurements in the Fourier domain, and
our goal is to generate new training examples consisting of a subsampled k-space measurement along with a
target image. MRAugment is model-agnostic in that the generated augmented training example can be used
with any machine learning model and therefore can be seamlessly integrated with existing reconstruction
algorithms for accelerated MRI, and potentially beyond MRI.

Our data augmentation pipeline, illustrated in Figure 1, generates a new example consisting of a subsampled
k-space measurement~ka along with a target image �x a as follows. We are given training examples as fully-
sampled k-space slices, which we stack into a single column vectork = col(k1; k2; :::; kN ) for notational
convenience. From these, we obtain the individual coil images by applying the inverse Fourier transform as
x = F � 1k . We generate augmented individual coil images with an augmentation functionD, speci�ed later,
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possible. Indeed, a large mismatch between training and test noise distribution leads to poor generalization
[16].

Let us demonstrate why it is non-trivial to generate augmented measurements for MRI through a simple
example. A natural but perhaps naive approach for data augmentation is to augment the real-valued target
image �x instead of the complex valuedx . This would allow us to directly obtain real augmented images from
a real target image just as in typical data augmentation. However, this approach leads to di�erent noise
distribution in the measurements compared to the test data due to the non-linear mapping from individual
coil images to the real-valued target and works poorly. Experiments demonstrating the weakness of this naive
approach of data augmentation can be found in Section4.5.

In contrast, if we augment the individual coil images x directly with a linear function D, which is our
main focus here, we obtain the augmented k-space data

ka = FD x = FD (x � + z0) = FD x � + FD z0;

where FD x � represents the augmented signal and the noiseFD z0 is still additive complex Gaussian. A key
observation is that in case of transformations such as translation, horizontal and vertical �ipping and rotation
the noise distribution is exactly preserved. Moreover, for general linear transformations the noise is still
Gaussian in the real and imaginary parts of each pixel.

To elaborate further, in the multi-coil case our augmentation pipeline applies transformations to the un-
derlying object modulated by the di�erent coil sensitivity maps. In particular, the fully sampled measurement
of the i th coil in the image domain takes the form

x i = Si x � + z0
i ; (3.1)

where z0
i = F � 1zi is i.i.d Gaussian noise obtained via a unitary transform of the original measurement noise.

Assuming linear augmentations, the augmented coil image from MRAugment can be written as

xa;i = D(Si x � + z0
i ) = DSi x � + Dz0

i ; (3.2)

where the additive noise is still Gaussian. As seen in(3.2), MRAugment transforms images modulated by
the coil sensitivities, therefore the sensitivitiy maps are also indirectly augmented. However, the models
we experimented with had no issues learning the proper mapping from augmented measurements with
transformed sensitivity maps as our experimental results show.

It is natural to ask if data augmentation would be possible by directly augmenting the object, before the
coil sensitivities are applied. If the sensitivity maps are known or are estimated a priori, one may recover the
object from the various coils as

x =
NX

j =1

S�
j x j =

NX

j =1

S�
j (Sj x � + z0

j ) = x � +
NX

j =1

S�
j z0

j ;

where S�
j is the complex conjugate ofSj and

P N
j =1 S�

j Sj = I due to typical normalization [31]. Then, we can
apply the augmentation as

xa = Dx = D(x � +
NX

i =1

S�
j z0

j ) = Dx � + D
NX

j =1

S�
j z0

j :

Finally, we obtain the augmented coil images as

xa;i = Si xa = Si Dx � + Si D
NX

j =1

S�
j z0

j : (3.3)

Comparing (3.3) with (3.2), one may see that now the augmentation is directly applied to the ground truth
signal bypassing the coil sensitivities. However, comparing this result in(3.3) with the original unaugmented
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3.3 Scheduling and application of data augmentations

With the di�erent components in place we are now ready to discuss the scheduling and application of
the augmentations, as depicted in the bottom half of Figure 1. Recall that MRAugment generates a
target image �x a and corresponding undersampled k-space measurement~ka from a full k-space measurement.
Which augmentation is applied and how frequently is determined by a parameterp, the common parameter
determining the probability of applying a transformation to the ground truth image during training, and
the weights W = ( w1; w2; :::; wK ) pertaining to the K di�erent augmentations, controlling the weights of
transformations relative to each other. We apply a given transformation t i with probability pi = p � wi . The
augmentation function is applied to the coil images, speci�cally the same transformation is applied with the
same parameters to the real and imaginary parts(<f x 1g; =f x 1g; <f x 2g; =f x 2g; :::; <f x N g; =f x N g) of coil
images. If a transformation t i is sampled (recall that we select them with probabilities pi ), we randomly
select the parameters of the transformation from a pre-de�ned range (for example, rotation angle in[0; 180� ]).
To avoid aliasing artifacts, we �rst upsample the image before transformations that require interpolation.
Then the result is downsampled to the original size.

A critical question is how to schedulep over training in order to obtain the best model. Intuitively, in
initial stages of training no augmentation is needed, since the model can learn from the available original
training examples. As training progresses the network learns to �t the original data points and their utility
decreases over time. We �nd schedules starting fromp = 0 and increasing over epochs to work best in practice.
The ideal rate of increase depends on both the model size and amount of available training data.

4 Experiments

In this section we explore the e�ectiveness of MRAugment in the context of accelerated MRI reconstruction
in various regimes of available training data sizes on various datasets. We start with providing a summary
of our main �ndings, followed by a detailed description of the experiments. Additional reconstructions and
more experimental details can be found in the supplementary material.

In the low-data regime (up to � 4k images), data augmentation very signi�cantly boosts reconstruction
performance. The improvement is large both in terms of raw SSIM and visual reconstruction quality. Using
MRAugment, �ne details are recovered that are completely missing from reconstructions without DA. This
suggests that DA improves the value of reconstructions for medical diagnosis, since health experts typically
look for small features of the anatomy. This regime is especially important in practice, since large public
datasets are extremely rare.

In the moderate-data regime ( � 4k � 15k images) MRAugment still achieves signi�cant improvement
in reconstruction SSIM. We want to emphasize the signi�cance of seemingly small di�erences in SSIM close
to the state of the art and invite the reader to visit the fastMRI Challenge Leaderboard that demonstrates
how close the best performing models are.

In the high-data regime (more than 15k images) data augmentation has diminishing returns. It does
not notably improve performance of the current state of the art, but it does not degrade performance either.
Our experiments in the latter two regimes however strongly suggest that data augmentation combined with
much larger models may lead to signi�cant improvement over the state of the art, even in the high-data
regime. However, without larger models it is expected that in a regime of abundant data, DA does not
improve performance. For the models and problem considered here, this is around15k images. We hope to
investigate the e�ectiveness of MRAugment combined with such larger models in our future work.

Additional bene�ts of data augmentation include improved robustness under shifts in test distribution,
such as improved generalization to new MRI scanners and �eld strengths. Furthermore, we observe that data
augmentation can help to eliminate hallucinations by preventing over�tting to training data.

4.1 Experimental setup

We use the state-of-the-art End-to-End VarNet model [31], which is as of now one of the best performing
neural network models for MRI reconstruction. We measure performance in terms of the structural similarity
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index measure (SSIM), which is a standard evaluation metric for medical image reconstruction. We study the
performance of MRAugment as a function of the size of the training set. We construct di�erent subsampled
training sets by randomly sampling volumes of the original training dataset and adding all slices of the sampled
volumes to the new subsampled dataset. For all experiments, we apply random masks by undersampling
whole k-space lines in the phase encoding direction by a factor of8 and including 4% of lowest frequency
adjacent k-space lines in order to be consistent with baselines in [38]. For both the baseline experiments
and for MRAugment, we generate a new random mask for each slice on-the-�y while training by uniformly
sampling k-space lines, but use the same �xed mask for each slice within the same volume on the validation
set (di�erent across volumes). This technique is standard for models trained on the fastMRI dataset and not
speci�c to our data augmentation pipeline. For augmentation probability scheduling we use

p(t) =
pmax

1 � e� c (1 � e� tc=T );

where t is the current epoch,T denotes the total number of epochs,c = 5 and pmax = 0 :55 unless speci�ed
otherwise. This schedule works resonably well on datasets of various size that we have studied and has not
been �ne-tuned to individual experiments. Ablation studies on the e�ect of the scheduling function is deferred
to the supplementary.

4.2 Low-data regime

For the low-data regime we work with two di�erent datasets, the Stanford 2D FSE dataset and the 3D FSE
Knee dataset described below and demonstrate signi�cant gains in reconstruction performance.

Stanford 2D FSE dataset. First, we perform experiments on the Stanford 2D FSE [3] dataset, a
public dataset of 89 fully-sampled MRI volumes of various anatomies including lower extremity, pelvis and
more. We use80%� 20% training-validation split, randomly sampled by volumes. We generate5 random
splits in order to minimize variations in reconstruction metrics due to validation set selection and report the
mean validation SSIM over 5 runs along with the standard errors.

We plot a training curve of validation SSIM with and without data augmentation in Figure 3a. The
regularizing e�ect of data augmentation prevents over�tting to the training set and improves reconstruction
SSIM on the validation dataset even in case of training4� longer than in the baseline experiments without
data augmentation. Figure 3b compares mean validation SSIM when the model is trained in di�erent data
regimes from25%to 100%of all training data. MRAugment leads to signi�cant improvement in reconstruction
SSIM and this improvement is consistent across di�erent train-val splits and training set sizes. We achieve
higher mean SSIM using only25% of the training data with MRAugment than training on the full dataset
without DA. On the full dataset, we improve reconstruction SSIM from 0:8950to 0:9120, and MRAugment
achieves even larger gains in the lower data regime. Figure4 provides a visual comparison of a reconstructed
slice emphasizing the bene�t of data augmentation.

Stanford Fullysampled 3D FSE Knees dataset. The Stanford Fullysampled 3D FSE Knees dataset
[27] consists of20 fully-sampled k-space volumes of knees. We use the same methodology to generate training
and validation splits and evaluate results as in case of the Stanford 2D FSE dataset.

This dataset has signi�cantly less variation compared to the Stanford 2D FSE dataset. Consequentially,
we observe strong over�tting early in training if no data augmentation is used (Figure 5a). However, applying
data augmentation successfully prevents over�tting. Furthermore, in accordance with observations on the
Stanford 2D FSE dataset, data augmentation signi�cantly boosts reconstruction SSIM across di�erent data
regimes (Figure5b).

4.3 High-data regime

Next, we perform an extensive study on the fastMRI dataset [38], the largest publicly available fully-sampled
MRI dataset with competitive baseline models, that allows us to investigate the utility of MRAugment across
a wide range of training data regimes. More speci�cally, we use the fastMRI knee dataset, for which the
original training set consists of approximately 35k MRI slices in 973 volumes and we subsample to1%, 10%,
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Figure 7: Single-coil (left) and multi-coil (right) validation SSIM vs. # of training images.

lead to poorer reconstruction SSIM. All ablation experiments can be found in the supplementary material.

4.4 Model robustness

In this section we investigate further potential bene�ts of data augmentation in scenarios where training
examples from the target data distribution are not only scarce as studied before, but unavailable. Distribution
shifts can have a detrimental e�ect on a variety of reconstruction methods [7]. Furthermore, we show some
initial experimental results how data augmentation may help avoiding hallucinated features appearing on
reconstructions due to over�tting.

Unseen MR scanners. First, we explore how data augmentation impacts generalization to new MRI
scanner models not available in training time. Di�erent MRI scanners may use di�erent �eld strenghts for
acquisition, and higher �eld strength typically correlates with higher SNR. Approximately half of the volumes
in the fastMRI knee dataset have been acquired by a1:5T scanner, whereas the rest by three di�erent3T
scanners. We perform the following experiments:

� 3T ! 3T: We train and validate on volumes acquired using3T scanners. Volumes in the validation set
have been imaged by a3T scanner not in the training set.

� 3T ! 1:5T: We train on all volumes acquired by 3T scanners and validate on the1:5T scanner.

� 1:5T ! 3T: We train on all volumes acquired by the1:5T scanner and validate on all other3T scanners.

Table 1 summarizes our results. Data augmentation consistently improves reconstruction SSIM on unseen
scanner models. Similarly to our main experiments, the improvement is especially signi�cant in the low-data
regime. We observe that DA provides the greatest bene�t when training on1:5T scanners and testing on3T
models. We hypothesize that data augmentation can hinder the model from over�tting to the higher noise
level present on1:5T acquisitions during training thus resulting in better generalization on the lower noise
3T volumes.

Unseen anatomies. We demonstrate how data augmentation may help improving generalization on
new anatomies not included in the training set, even in the high-data regime. We train a VarNet model
on the complete fastMRI knee train dataset using the hyperparameters recommended in Sriram et al.[31],
and evaluated the network on the fastMRI brain validation dataset throughout training. We repeated the
experiment with the same hyperparameters, but with MRAugment turned on. The results can be seen in Fig.
9. The regularizing e�ect of data augmentation impedes the network to over�t to the training dataset, thus
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Appendix outline

The following appendix provides additional experimental details, enlarged images of reconstructed slices
and extra discussions not included in the main paper. The organization of the supplementary material is as
follows:

FastMRI dataset. Appendix A provides additional details on the fastMRI dataset and the experimental
setup used in our experiments. We plot reconstruction metric results in PSNR in addition to the SSIM
comparison in the main paper (Fig. 7) and demonstrate gains comparable to that measured in SSIM. Further-
more, we plot randomly picked reconstructions from the validation set in order to provide a comprehensive
view of reconstruction quality. Finally, we apply MRAugment with a model di�erent from the one used in
our main experiments on the fastMRI dataset to demonstrate the wider applicability of DA for deep learning
based MR reconstruction.

Stanford datasets. In Appendices B and C we provide more details on the Stanford datasets and the
experimental details. Moreover, further reconstructed slices are depicted complementing the ones in the main
paper.

Robustness. In Appendix D we give more details on the robustness experiments from Section4.4,
describing the MR scanner models used in the experiments.

Ablation studies. In Appendix E we perform ablation studies on the fastMRI dataset to investigate
the utility of various augmentations and the e�ect of augmentation scheduling on the �nal reconstruction.

Finally, our code is published at https://github.com/MathFLDS/MRAugment . We refer to this code
for additional detail regarding the implementation. We note that MRAugment pipeline can be seamlessly
integrated with any existing MR reconstruction code, and can be applied to the fastMRI code base by only a
couple of lines of additional code. We hope that the utility and ease of use of MRAugment will prove useful
for a wider range of practitioners.

A Experiments on the fastMRI dataset

A.1 Experimental details

The fastMRI dataset [38] is a large open dataset of knee and brain MRI volumes. The train and validation
splits contain fully-sampled k-space volumes and corresponding target reconstructions for both (simulated)
single-coil and multi-coil acquisition. The knee MRI dataset we are focusing on in this paper includes973
train volumes (34742slices) and199validation volumes (7135slices). The target reconstructions are �xed size
320� 320 center cropped images corresponding to the fully-sampled data of varying sizes. The undersampling
ratio is either 25% (4� acceleration) or 12:5% (8� acceleration). Undersampling is performed along the
phase encoding dimension in k-space, that is columns in k-space are sampled. A certain neighborhood of
adjacent low-frequency lines are always included in the measurement. The size of this fully-sampled region is
8% of all frequencies in case of4� acceleration and4% in case of8� acceleration.

Dataset sampling. We use the fastMRI [38] single-coil and multi-coil knee dataset for our experiments.
For creating the sub-sampled datasets, we uniformly sample volumes from the training set, and add all slices
from the sampled volumes. Our validation results are reported on the whole validation dataset. Images
in the dataset have varying dimensions. Due to GPU memory considerations we center-cropped the input
images to640� 368 pixels (which covers most of the images). We use random undersampling masks with8�
acceleration and4% fully-sampled low-frequency band, undersampled in the phase encoding direction by
masking whole kspace lines. We generate a new random mask for each slice on-the-�y while training, but use
the same �xed mask for each slice within the same volume on the validation set (di�erent across volumes).

Model. We train the default E2E-VarNet network from Sriram et al. [31] with 12 cascades (approx.30M
parameters) for both the single-coil and multi-coil reconstruction problems. For single-coil data we remove
the Sensitivity Map Estimation sub-network as sensitivity maps are not relevant in this problem.

Hyperparameters and training. We use an Adam optimizer with 0:0003 learning rate following
Sriram et al. [31]. We train the baseline model on the full training dataset for 50 epochs. For the smaller,
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sub-sampled datasets we train for the same computational cost as the baseline, that is we train forN � 50
epochs on1=Nth of the training data. Without data augmentation, we observe a saturation in validation
SSIM during this time. With data augmentation we trained 50% longer as we still observe improvement in
validation performance after the standard number of epochs. We report the best SSIM on the validation set
throughout training. We train on 4 GPUs for single-coil data and on 8 GPUs for multi-coil data. The batch
size matches the number of GPUs used for training, since a GPU can only hold a single datapoint.

Data augmentation parameters. The transformations and their corresponding probability weights
and ranges of values are depicted in Table3. We adjust the weights so that groups of transformations such
as rotation (arbitrary, by k � 90� ), �ipping (horizontal or vertical) or scaling (isotropic or anisotropic) have
similar probabilities. For both the a�ne transformations and upsampling we use bicubic interpolation. Due to
computational considerations we only use upsampling before transformations for the single-coil experiments.

A.2 Additional experimental results on the fastMRI dataset

Comparison of additional metrics. In order to provide more in-depth comparison for our main experiment,
here we provide results on PSNR as an additional image quality metric, extending our results from Figure
7. We observe signi�cant and consistent improvement in PSNR when applying MRAugment (Fig. 11) with
similar trends to SSIM: the improvement is the most prominent in the low-data regime, but still signi�cant in
the moderate domain.
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Figure 11: Single-coil (left) and multi-coil (right) validation PSNR vs. # of training images.

Additional reconstructions. In order to demonstrate that MRAugment works well across a wide range
of MR slices, here we provide additional reconstructions with and without data augmentation. In multi-coil
reconstructions the visual di�erences are more subtle, therefore we magni�ed regions with �ne details for
better comparison.

Figures 15 and 16 provide a comprehensive set of reconstructions across all subsampling ratios with and
without data augmentation for the single-coil and multi-coil slices additional to the ones presented in Figure
6.

Even though the most visible improvement on reconstructions is observed when training data is especially
low (1% subsampling), Figure 12 provides a closer look at a slice where signi�cant details are recovered by
MRAugment using 10% of training data.

Figures 17 and 18 provide more reconstructed slices randomly sampled from the validation dataset with
and without DA.

Other models. Even though we demonstrated our DA pipeline on E2E-VarNet, the potential of our
technique is not limited to a speci�c model. We performed preliminary experiments on i-RIM [25], another
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B Experiments on the Stanford 2D FSE dataset

The Stanford 2D FSE [3] dataset is a public dataset of89 fully-sampled MRI volumes of various anatomies
including lower extremity, pelvis and cardiac images. All measurements have been acquired by the same
MRI scanner using multi-coil acquisition, however volume dimensions and the number of receiver coils vary
between volumes. The total number of MRI slices is about5% of the fastMRI knee training dataset.

Dataset sampling. When random sampling, we randomly select volumes of the original dataset and
add all slices of the sampled volumes. For volumes where multiple contrasts are available, we arbitrarily
pick the �rst one and discard the others. We scale all measurements by10� 7 to approximately match the
range of fastMRI measurements. Unlike the fastMRI dataset, Stanford 2D FSE is not separated into training,
validation and test sets. Therefore, we use80%� 20% training-validation split in our experiments, where
we generate5 random splits in order to minimize variations in reconstruction metrics due to validation set
selection and show the mean of validation SSIMs over all5 runs. When performing experiments on less
training data, we keep 20% of the full dataset as validation set and only subsample the train split. We
use no center-cropping on the training images as volume dimensions vary strongly. We undersample the
measurements by a factor of8 and generate masks the same way as in the fastMRI experiments detailed in
Section A.

Model. We train the default E2E-VarNet network as used in the multi-coil fastMRI experiments detailed
in Section A.

Hyperparameters and training. We use Adam optimizer with a learning rate of 0:0003 as in our
other experiments. For the baseline experiments without data augmentation, we train the model for50
epochs, after which we see no signi�cant improvement in reconstruction SSIM and the model over�ts to the
training dataset. With data augmentation we train for 200 epochs, as validation SSIM increases well after50
epochs and we observe no over�tting. In all experiments, we report the mean of best validation SSIMs over5
independent runs.

Data augmentation parameters. In all data augmentation experiments on the Stanford 2D FSE
dataset we use exponential schedulig withpmax = 0 :55. The range of values for the various transformations
is almost identical to that in Table 3. For more details we refer the reader to the attached source code.

C Experiments on the Stanford Fullysampled 3D FSE Knees dataset

The Stanford Fullysampled 3D FSE Knees dataset [27] is a public MRI dataset of 20 fully-sampled k-space
volumes of knees, acquired by the same MRI scanner. Each volume consists of256 slices of320� 320 images
with a multi-coil acquisition using 8 receiver coils. The full dataset consists of5120slices, or about15% of
the fastMRI knee training dataset.

Experimental setup. We apply the same dataset sampling, metric reporting method, model and
hyperparameters (includig data augmentation scheduling) as in the Stanford 2D FSE experiments in Section
B. We scale all original measurements by10� 6.

D Robustness experiments

Validation on unseen MRI scanners. We explore how data augmentation impacts generalization to
new MRI scanner models not available in training time. Di�erent MRI scanners may use di�erent �eld
strenghts for acquisition, and higher �eld strength typically correlates with higher SNR. Volumes in the
fastMRI knee dataset have been acquired by the following4 di�erent scanners (followed by �eld strength):
MAGNETOM Aera (1.5T), MAGNETOM Skyra (3T), Biograph mMR (3T) and MAGNETOM Prisma Fit
(3T) . The number of slices acquired by the di�erent scanners are shown in Table2. We perform the following
experiments:
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E Ablation studies

Transformations. We performed ablation studies on1% of the fastMRI knee training dataset in order to
better understand which augmentations are useful. We use the multi-coil experiment with all augmentations
as baseline and tune augmentation probability for other experiments such that the probability that a certain
slice is augmented by at least one augmentation is the same across all experiments. We depict results on
the validation dataset in Table 4. Both pixel preserving and general (interpolating) a�ne transformations
are useful and can signi�cantly increase reconstruction quality. Furthermore, we observe that their e�ect
is complementary: they are helpful separately, but we achieve peak reconstruction SSIM when all applied
together. Finally, the utility of pixel preserving augmentations seems to be lower than that of general a�ne
augmentations, however they come with a negligible additional computational cost.

Augmentation scheduling. Furthermore, we investigate the e�ect of varying the augmentation proba-
bility scheduling function. The results on the validation dataset are depicted in Table 5, where exponential, p̂
denotes the exponential scheduling function in

p(t) =
pmax

1 � e� c (1 � e� tc=T );

with pmax = p̂ and constant, p̂ means we use a �xed augmentation probabilityp̂ throughout training. We
observe that scheduling starting from low augmentation probability and gradually increasing is better than a
constant probability, as initially the network does not bene�t much from data augmentation as it can still
learn from the original samples. Furthermore, too low or too high augmentation probability both degrade
performance. If the augmentation probability is too low, the network may over�t to training data as more
regularization is needed. On the other hand, too much data augmentation hinders reconstruction performance
as the network rarely sees images close to the original training distribution.
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Ground truth 100% train 1% train + DA 1% train

Figure 17: Visual comparison of fastMRI single-coil reconstructions using varying amounts of training data
with and without data augmentation.
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Ground truth 100% train 1% training data + DA 1% training data

Figure 18: Visual comparison of fastMRI multi-coil reconstructions using varying amounts of training data
with and without data augmentation.
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